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LETTER TO THE EDITOR 

Surface critical behaviour of the honeycomb O(n) loop 
model with mixed ordinary and special boundary 
conditions 

M T Batchelor and C M Yung 
Depamnent of Mathematics, School of Mathematical Sciences, Aumalian National University, 
Canberra ACT 0200, Australia 

Received 2 May 1995 

Abstract The O(n) loop model on the honeycomb lavice with mixed o r d i i  and special 
boundary wnditions is solved exactly by means of the Bethe ansatz. The calculation of the 
dominant finite-siv.,eorrectians to the eigenspectrum yields the mixed boundaq scaling index 
and ihe geomeoic scaling dimensions describing the universal surface critical behaviour. Enact 
results follow in the limit n = 0 for the polymer adsorption ansition with a mixed adsorbing 
and free boundary. These include the new canliiguratio?al exponent M = 2. 

The critical behaviour of semi-infinite d-dimensional systems with free surfaces can be very 
rich, with the possibility of ‘special’ or multicritical surface behaviour when the surface 
couplings are sufficiently enhanced [1,2]. One fundamental model of relevance in tbis 
context is the semi-infinite two-dimensional n-vector or O(n) model [3]. In the limit n =0 ,  
which describes self-avoiding walks [4], the special transition corresponds to the polymer 
adsorption transition [SI. 

In this letter we derive the surface critical behaviour of the O(n) loop model on the 
honeycomb lattice with ‘ordinary’ (0) and ‘special’ ( S )  boundary conditions on either side 
of a finite strip, i.e. a strip finite in one direction and infinite in the other. Such mixed 
boundary conditions are of current interest for general d,  being of relevance to +e Casimir 
interaction between two spherical particles in a fluid at the critical point (see e.g. [6] and 
references therein). In d = 2, with boundary conditions a and b on opposite edges of a strip 
of width N ,  the free energy per site of a critical-system scales as (see [7] and references 

~ 

therein) . 
f N  N fB + fuN- ’  4- -k A.hN-2 (1) 

for large N .  Here fB is the bulk free energy, fu and f h  are surface free energies and Anb is 
the universal Casimir amplitude. This Casimir contribution to the free energy has recently 
been calculated for the O(n) model with various mixed boundary conditions via conformal- 
invariance methods [7]. Here we derive this quantity exactly for mixed O S  boundary 
conditions, along with the surface scaling dimensions, from the Bethe ansatz solution of the 
corresponding O(n) loop model [SI on the honeycomb lattice. 

The partition sum of our O(n) loop model is defined as 

where the sum is over all configurations of closed and non-intersecting loops on the lattice 
depicted in figure 1. Here P is the total number of closed loops of fugacity n in a given 
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configuration. We take boundary condition a (6) on the left (right) edge of the strip. At 
n = 0, x is the fugacity of a step in the bulk and yo (yb) is the fugacity of a step along the 
left (right) edge. Thus L is the number of steps in the bulk and L, (Lb) is the number of 
steps along the left (right) edge. 

Figure 1. The open honeycomb lattice. The vansfer maviX acts in the vertical direuion. 

(a) 

Figure 2. The allowed m o w  configurations and corresponding Boltzmann weights for (a) bulk 
and (b) surface vertices, 

We have found that the equivalent three-state vertex model can be solved for a number of 
boundary conditions. The possible arrow configurations and their corresponding Boltzmann 
weights are shown in figure 2. Here the phase factors are such that n = s+s-' = -2cos 4h. 
The integrable bulk weights follow in a particular limit of the Izergin-Korepin R-matrix 
[9, lo], with fB = 2cosh. or equivalently, with critical bulk coupling 1111 

1/x* = J~&G. (3) 
On the other hand, the integrable boundary weights follow [I21 from appropriate 
combinations of the three known reflection or K-matrices satisfying the boundary version 
of the Yang-Baxter equation 1131. 

Three inequivalent integrable sets of boundary weights are known to be compatible 
with O(n) synunem. One set corresponds to 0-0 boundary conditions [14], with boundary 
weights and equivalent critical surface couplings given by 

= fb = f B  yt = X * .  (4) 
Another corresponds to S S  boundary conditions [15], with 

cos 2h 
cos A f, = fb = - * y,' = yh' = y* (5) 
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where 

1/y* = 

The third set is a mixture of the above, and corresponds to Os boundary conditions, with 
. ,  cos 2h 

cos I to = tB  tb = - * y,: = x* Yh' = Y- (7) 

The self-avoiding walk point at n = 0 occurs at A = n/8, where l/x' = 
and l/y* = 2'14 [15]. In the lattice model of the polymer adsorption transition 151, the 
self-avoiding walk has energy 

E = --EL, (8) 

where E is a constant and L. is the number of steps along the adsorbing boundary, in this 
case the right-hand side of the strip. For the O S  boundary conditions, we thus obtain the 
same critical adsorption temperature 

exp (i) = y"/x .-J--= - 1 + A  1.553 ..: , 

k Ta 6) 
as for the S S  boundary conditions [15], i.e. with adsorbing boundaries on both sides of the 
strip. Recent phenomenological renormalization transfer matrix calculations on the square 
lattice with one adsorbing and one free boundary are consistent with this finding [16]. 

We have previously solved the corresponding vertex model by means of the coordinate 
Bethe ansatz for the 0-0 and an analytic Bethe ansatz for S S  boundary conditions 
[14,12,15]. Proceeding in a similar manner to [12], we find that the eigenvalues of the 
transfer matrix for the 0s boundary conditions are given by 

sinh(uj + i31/2) sinh(uj - i3h/2) 
j = I  n sinh(u, + ih/2) sinh(u, - ih/2) 

where the uj  follow as mots of the Bethe ansatz equations 

sinh(uj - 942) sinh(uj - i3h/2) 
sinh(uj + ib/2) sinh(uj + i3h/2) 

sinh(2rrj + ih) 
sinh(2uj - ih) 

sinh(uj - up.+ ih) sinh(uj + Uk + ih) sinh(uj - uk - iw) sinh(uj + ut - i2h) 
k=l I-I sinh(uj - uk - ih) sinh(uj + ux - ib) sinh(uj - uk + i2b) sinh(uj + Uk + i21) 
#j 

m 

. (11) 

Here N is the width of the strip (e.g. N = 8 in figure 1) and m labels the sectors of the 
transfer matrix, with m = N for the largest eigenvalue no. A more convenient sector label 
is = N -m. 

The direct calculation of the finitesize corrections to the eigenvalue spectrum follows a 
well-trodden path (see e.g. [14] and references therein). In this case the largest eigenvalue 
in a given sector m is characterized by real positive mots with related integers Ij = j ,  
j = 1,. . . , m. Defining the free energy per site as fN = N-l  logA0. we find 

fN N fB + fo-sN-'  f AO-SN-'. (12) 

This result is to be compared with equation (1). Dealing with the non-universal terms first, 

dr 
- 1) 
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is the bulk free energy (14,171 and 

sinh $Ax cosh $(r - 2h)x sinh i(r - 6h)x 
xsinhirrx(2coshA.x - 1) dr (14) 

1 1 -cosh 
fo-s = - 2 log (1 - cos?,).) + Lm ,~ 

is the surface free energy for the mixed O S  boundary conditions. We note, however, the 
identity 

(15) 
where f0-0 and fs-s have been derived previously [14,15, IS]. The individual surface 
contributions are thus 

fo-s = ;(fo-o -!- fs-s).= fo + f s  
, ,  

I I -cosh 
f o  = -log 4 (1 - cos3A) 

sinh +Ax cosh 4Axcosh i(r - 2A)x sinh i(r - 3A)x(2cosh $Ax - 1) 
x sinh $zr(ZcoshAx - 1) 

dx  (16) +2S_a 
and 

1 1 - COSA 
f s  = -log 4 (1 - cos3h) 

sinb fAxsinh$Axcosh$(r - 2h)xcosh i(r - 3A)r 
dx. (17) 

In particular, at n = 0 we have A0 = (2 + 1 + fi)  with f~ = &(2+ &), fo = 0 
and fs = - log(1 + A); Here the si& change in fs represents an amaction towards the 
adsorbing boundary. 

-2L xsinh$rx(ZcoshAx - 1) 

The Cas& amplitude appearing in (1) and (12) is given by 
r@ 

Ao-s - 
24 

where { = 2/& is a lattice-dependent~scale factor. The effective central charge is 

12A2 
r(r - 2h) 

t = 1 -  

with c  ̂= 0 at n = 0. The mixed boundary scaling index [ 19,201 follows as 
1 -rr + SA 

to+ = %(c - 5)  = S(Z~- 2A) 
in agreement with the conformal invariance prediction [7]. 

the inverse correlation lengths via E211 
The geometric scaling dimensions defining the surface critical behaviour follow from 

These dimensions govern the geomeeric correlation 

G ~ ( Z  - y) - lz - yi-"' (22) 
between t non-intersecting self-avoiding walks tied together at their extremities z and y. 
which for surface critical phenomena are near the boundary of the half-plane [22]. For mixed 
boundary conditions there is a discontinuity at the origin between boundary conditions a 
and b corresponding to the insertion of a boundary operator [19]. 
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Here the scaling dimensions Xe are associated with the largest eigenvalue in each sector 
of the transfer matrix. We find 

where sg = 2.n - 4h. These dimensions are to be c0mpared.wit.h the other Bethe ansatz 
results. For the ordinary (0-0) transition [14J 

(24) 

~. 

x, = &eZ+ fr(g - z)e e = i , ~ , .  . . . (23) 

x, = $ge2 + 4(g - i)e 
or X, = h,+l.l in terms of the Kac formula [22,23]. On the other hand, for the special 
( S S )  transition [I51 

or X, = h,+1.3 [24-26]. For the mixed Os boundary conditions we have X, = hL+l.l -$e. 
At n = 0 (g = 1). corresponding to mixed adsorbing and free boundaries in the polymer 

problem, (23) gives 

(26) 
The first two values are XI = and Xz = X, = 1. These dimensions define critical 
exponents for polymers in the upper half-plane, with one boundary condition on the positive 
and the other on the negative x-axis, the two geometries (the strip and the half-plane) being 
related via a conformal map (see e.g. [ 191). In particular, the number of self-avoiding walks 
which begin near the origin (where the boundary conditions meet in the half-plane) scales 
as P - l p '  where p = I/x' and the universal value yl = $ follows from.the usual scaling 
relation [l, 21 

3 2  1 x, = % e  - ae. 

y, = (2 - x, - X:U")u (27) 
where U = 2 4 and XPl' = 5 [ll].  The  exponent^ yl = is to be compared with the exact 
values for the non-mixed cases, where y1 = 3 for a non-adsorbing boundary {ordinary 
transition) and yl = 8 for &I adsorbing boundary (special transition). 

A detailed account of our results is currently in preparation [18]. 

It is a pleasure to thank M N Barber, J L Cardy and A L Owczarek for helpful comments. 
This work'has been supported by the Australian Research Council. 
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